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COVID-19 Forecast Hub

Team: Martha Zorn, Nutcha Wattanachit, Serena Wang,
Nicholas Reich, Evan Ray, Jarad Niemi, Khoa Le,
Abdul Hannan Kanji, Dasuni Jayawardena, Katie House,
Estee Cramer, Matt Cornell, Andrea Brennen, Johannes Bracher

* underline denotes ensemble contributor

CDC Collaborators: Michael Johansson, Matthew Biggerstaft,
Joseph Walker, Velma Lopez, Rachel Slayton

Ensemble "advisory committee": Jacob Bien, Logan Brooks,
Sebastian Funk, Tilmann Gneiting, Anja Muhlemann, Aaron Rumack,
Ryan Tibshirani

Modeling groups: Over 50 groups at various institutions have
contributed forecasts to the hub
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Why Forecast?

To inform public health planning:

e Do we have enough hospital beds?

e \Where will we need to send more resources (personal protective
equipment)?

 \Where should we select vaccine trial sites?


https://viz.covid19forecasthub.org/

Our Contributions

Infrastructure for collecting forecasts
e Each week, teams submit csv files with forecasts to GitHub repository
e Files are automatically validated for formatting and reasonableness

e For example, predicted cumulative deaths can’t be negative

Models

¢ Ensemble model — combines forecasts from all submitted models
e Baseline model — naive reference model

Visualization
e Interactive visualizations shown earlier

Evaluation
o Are forecasts reliable?
e Are some models better than others?


https://github.com/reichlab/covid19-forecast-hub
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Building the Ensemble: View 1
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* For each combination of spatial unit s, time point t, and forecast horizon h,
teams are required to submit K=23 quantiles of a predictive distribution:
P < qg‘t,h,l) =001, P(¥Y< qg,h,z) =0.025, ..., P(Y< qs’i’t,h’lz) =05, ..., P(Y< qu,h,m) = 0.99

Limits of a 98% prediction interval

The predictive median

* The predictive quantiles for the ensemble are a combination of component

predictions at each quantile level:
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Building an Ensemble — View 2

* The pairs <qzlt,h,k’ P(", < q;””f,,h,k)> fall along the predictive CDF for model m
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* Three options for the combination function f:

1 M
e QuantMean: As.thk = I Z Dy ik
m=1

e QuantMedian: ¢, =median(g,,, . ....q",,)
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Baseline Model

* Acknowledgment: idea adapted from a suggestion by Ryan Tibshirani
 (Goal: Median predicted incidence is most recent observed incidence
* Predictions of cumulative deaths derived from predictions of incident deaths
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Baseline Model

Procedure:
e Compute first differences of historical incidence:

09

400+
300
2004

A=Y= Y J i

e Collect first differences and their negatives
o Sample first differences and add to last observed incidence
(note: sampling not necessary for horizon 1, just use all observed differences)
* Adjustments for “niceness”:
* Force median = last observed incidence
* Truncate at 0
* |terate for horizons > 1



Evaluation Part 1: Ensembles Compared (WIS)

* Weighted Interval Score (WIS) measures the distance of the predictive distribution
from the observed response
e Sum of mean absolute error and penalties for predictive intervals that miss
e Smaller WIS is better

1 week ahead 2 weeks ahead
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* All three ensembles are better than the baseline
* QuantMedian and QuantTrained are comparable to or better than QuantMean
* No clear ordering of QuantMedian and QuantTrained



Evaluation Part 2(b): Ensemble vs Components (WIS)

Mean WIS across all forecasted locations, by week and target Figure due to Nick Reich
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Evaluation Part 2(a): Ensemble vs Components (MAE)

e MAE: On average, how far was the median of the predictive distribution from the
eventually-observed count?

* Looking here at results for a set of 8 models that have submitted forecasts for all
states and the US since the week of May 2

e Credit to Estee Cramer for this figure

Figure 2: MAE aggregated across weeks and locations
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Evaluation: Probabilistic Calibration

* At each predictive interval level, what proportion of intervals contain the
eventually-observed outcome?
* This figure shows calibration of the ensemble model only
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Evaluation: Probabilistic Calibration

e At each predictive interval level, what proportion of intervals contain the eventually-
observed outcome?
* This figure shows calibration of the ensemble model only
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A Current Challenge: Case Forecasts
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Current Work/Future Directions

e Continue accepting and processing forecasts
e Challenges:
e Massive amount of data — how to store it?
e Versioning forecasts

e Refining ensemble methods
e Recent analyses indicate a weighted median may be helpful
e Challenges:
e Models change over time; relative skill may not be stable
e Limited data, flexible ensemble approaches may be overfitting

e Forecasting model development
e In flu forecasting, we saw that statistical time-series models were quite
effective — we would like to develop these models for COVID-19
e Challenges:
e Time
e Hierarchical structure, forecast horizon-specific model fits, merging
mechanistic models with time series models



Thanks!

COVID-19
ForecastHub

Acknowledgments again to:
e Nick Reich
 The whole COVIDhub team
e CDC colleagues
e Contributing modeling teams
 Epidemiologists and medical workers everywhere

We're hiring for a post-doctoral position, get in touch if interested!
elray@umass.edu



