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Why model?
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Real-time public health data 
is imperfect
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Flu data from New England 
2017/2018 season

Data available as of Friday, Dec 29 2017 
gives a flu signal through Saturday, Dec 23, 2017.

1 week lag. current time



Real-time public health data 
is imperfect
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Flu data from New England 
2017/2018 season

Flu data from New England 
2017/2018 season

Purple model foresees  
continued decline. 



Real-time public health data 
is imperfect
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Flu data from New England 
2017/2018 season

Red model is suspicious of downtick in activity,  
predicts continued growth.

Flu data from New England 
2017/2018 season

Purple model foresees  
continued decline. 



Real-time public health data 
is imperfect
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Flu data from New England 
2017/2018 season

Red model is suspicious of downtick in activity,  
predicts continued growth.

Flu data from New England 
2017/2018 season

Purple model foresees  
continued decline. 

Each model is predicting unobserved  
data in both the past and the future!



Real-time public health data 
is imperfect
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Flu data from New England 
2017/2018 season

Flu data from New England 
2017/2018 season

Data were later revised (light green),  
showing that indeed, trends were increasing 

but the surveillance system didn't pick it up until later.



Good models might...

• Anticipate and adjust for data quality issues. 

• Infer what is happening right now. 

• Forecast what will be observed in the near future. 

• Project hypothetical outcomes in the distant future.
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Don't expect a single model to do all of these things well!



COVID-19 example
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https://calcat.covid19.ca.gov/cacovidmodels/ 

California COVID Assessment Tool 

https://calcat.covid19.ca.gov/cacovidmodels/


Nowcasting

12https://epiforecasts.io/covid/posts/national/united-states/ 

"Time-varying estimate of the effective reproduction number (lightest ribbon 
= 90% credible interval; darker ribbon = the 50% credible interval, darkest 

ribbon = 20% credible interval)... Estimates from existing data are shown up 
to the 2020-10-10 from when forecasts are shown."

Not as agreed upon definition, but I'd vote for 
"building a model that draws inference  

about trends the recent past."

https://epiforecasts.io/covid/posts/national/united-states/


Nowcasting

12https://epiforecasts.io/covid/posts/national/united-states/ 

"Time-varying estimate of the effective reproduction number (lightest ribbon 
= 90% credible interval; darker ribbon = the 50% credible interval, darkest 

ribbon = 20% credible interval)... Estimates from existing data are shown up 
to the 2020-10-10 from when forecasts are shown."

Not as agreed upon definition, but I'd vote for 
"building a model that draws inference  

about trends the recent past."

Nowcast can enhance "situational 
awareness", providing intuition about the 

current and near-term trends.

https://epiforecasts.io/covid/posts/national/united-states/


Short-term Forecasting
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https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html 

Making falsifiable, evaluable predictions of  
observable future quantities.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html


Short-term Forecasting

13
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html 

Making falsifiable, evaluable predictions of  
observable future quantities.

Forecasts can provide actionable information 
to help with outbreak preparedness: 

probability that hospitals will be exceed 
capacity, PPE allocation, healthcare clinic 

staffing, vaccine site selection, ...

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html


Long-term Scenarios

14https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf 

Projections based on specific assumptions.

https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf


Long-term Scenarios

14https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf 

Projections based on specific assumptions.

Projections can provide decision-makers 
with a set of hypothetical futures based on 
comparisons of different policy choices. 

https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-09-25-COVID19-Report-33.pdf


A Brief History of 
Epidemic Modeling
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Modeling disease transmission
Susceptible-Infectious-Recovered (SIR) epidemiological 

models encode a mechanistic understanding of the 
biological transmission of disease.
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IS R

Model theory has been developed 
for over 100 years. 
  

Google: "epidemic theory youtube" or https://www.youtube.com/watch?v=CmhL4rVLwn0 

https://www.youtube.com/watch?v=CmhL4rVLwn0


– Pierre-Simon LaPlace (1825)

“We may regard the present state of the universe as the 
effect of its past and the cause of its future. An intellect 

which at a certain moment would know all forces that set 
nature in motion, and all positions of all items of which 

nature is composed, ... for such an intellect nothing would 
be uncertain and the future just like the past would be 

present before its eyes.” 

17
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present before its eyes.” 
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i.e. knowledge of the "mechanism" is crucial



– Sherlock (2017)

“The world is woven from billions of lives, every strand 
crossing every other. What we call premonition is just 
movement of the web. If you could attenuate to every 
strand of quivering data the future would be entirely 

calculable. As inevitable as mathematics.” 
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– Sherlock (2017)

“The world is woven from billions of lives, every strand 
crossing every other. What we call premonition is just 
movement of the web. If you could attenuate to every 
strand of quivering data the future would be entirely 

calculable. As inevitable as mathematics.” 
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i.e. data is all you need



Model Taxonomy: 
Mechanism vs. Phenomenon
"...all positions of all 
items of which nature is 
composed..." 

SIR epidemiological 
models encode a 
mechanistic 
understanding of the 
biological transmission 
of disease.

19

"...attenuate to every 
strand of quivering 
data..." 

Look at your data, and 
use it to build the best 
model you can, without 
thinking about the 
underlying mechanism.

data forecastIS R
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Semi-mechanistic
Mechanistic Phenomenological

SIR
SIRS

SEIRS
spatial regression 

...

time-series with climate vars.  

...
...

social media  
keyword analysis

time-series smoothing

regression w/ lagged incidence

agent-based
SIR + smoothing

Infectious Disease Model Taxonomy

deep learning



Lessons from flu 
forecasting
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Reich et al. 2019, PNAS. https://doi.org/10.1073/pnas.1812594116  
Reich et al. 2019, PLOS Comp Bio. https://doi.org/10.1371/journal.pcbi.1007486  
McGowan et al. 2019, Sci Rep. https://doi.org/10.1038/s41598-018-36361-9 

https://doi.org/10.1073/pnas.1812594116
https://doi.org/10.1371/journal.pcbi.1007486
https://doi.org/10.1038/s41598-018-36361-9


Forecasting Seasonal Flu
CDC FluSight challenges: U.S. national, regional, state forecasts
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Target variable "weighted ILI":
The % of all outpatient visits with primary  
complaint of influenza-like illness (ILI),  
weighted by state population.



Targets with Public Health Relevance
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based on annual CDC FluSight forecasting challenge 

weeks

w
ei

gh
te

d 
IL

I 4 wk ahead

3 wk ahead

2 wk ahead

1 wk ahead

last week for which  
data is available

week in which  
forecasts are generated

forecasts

onset week

regional baseline

peak week

peak intensity



Evaluating seasonal flu forecasts
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more accurate

less accurate



Many models outperform baseline 
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more accurate

less accurate

Baseline model
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Many models outperform baseline 

25

more accurate

less accurate

Baseline model

highest baseline accuracy



Ensembles have best scores
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Models with “FSNetwork” prefix are different versions of the ensemble models.

Four ensemble 
models have 
best scores.

more accurate



Forecasting COVID-19
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Ray et al, 2020, medrxiv. https://doi.org/10.1101/2020.08.19.20177493  
Bracher et al, 2020, arxiv. https://arxiv.org/abs/2005.12881  
Brooks, Ray et al, 2020, IIF blog.  
https://forecasters.org/blog/2020/10/28/comparing-ensemble-approaches-for-short-term-probabilistic-covid-19-forecasts-in-the-u-s/ 

https://doi.org/10.1101/2020.08.19.20177493
https://arxiv.org/abs/2005.12881
https://forecasters.org/blog/2020/10/28/comparing-ensemble-approaches-for-short-term-probabilistic-covid-19-forecasts-in-the-u-s/


Team: Martha Zorn, Nutcha Wattanachit, Serena Wang, Ariane Stark,  
Nicholas Reich, Evan Ray, Jarad Niemi, Khoa Le, Abdul Kanji, 
Dasuni Jayawardena, Yuxin Huang, Katie House, Estee Cramer,  

Matt Cornell, Andrea Brennen, Johannes Bracher 
* underline denotes ensemble contributor  

 
CDC Collaborators: Michael Johansson, Matthew Biggerstaff,  

Jo Walker, Velma Lopez, Rachel Slayton


Ensemble “advisors": Jacob Bien, Logan Brooks, Sebastian Funk, 
Tilmann Gneiting, Anja Muhlemann, Aaron Rumack, Ryan Tibshirani


Modeling groups: Over 50 groups at various institutions have 
contributed forecasts to the hub

https://covid19forecasthub.org/ 
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https://covid19forecasthub.org/


Background

• Each week the Hub receives forecasts of weekly 
incident and cumulative deaths and incident cases 
in the US due to COVID-19 from over 50 teams. 

• The Hub builds an ensemble that combines 
predictions from these models for 1 through 4 week 
ahead forecasts.

29



Modeling approaches vary
• YYG-ParamSearch: "machine learning techniques on top of a classic infectious disease model to make 

projections for infections and deaths." 

• UMass-MechBayes: "classical compartmental models from epidemiology, prior distributions on 
parameters, models for time-varying dynamics, models for partial/noisy observations of confirmed cases 
and deaths." 

• UCLA-SuEIR: "an improved SEIR model for predicting the dynamics among the cumulative confirmed 
cases and death of COVID-19" 

• IHME-CurveFit: "hybrid modeling approach to generate our forecasts, which incorporates elements of 
statistical and disease transmission models." 

• MOBS-GLEAM_COVID: "The GLEAM framework is based on a metapopulation approach in which the 
world is divided into geographical subpopulations.  Human mobility between subpopulations is 
represented on a network." 

• UT-Mobility: "For each US state, we use local data from mobile-phone GPS traces made available by 
[SafeGraph] to quantify the changing impact of social-distancing measures on 'flattening the curve.' " 

• GT-DeepCOVID: "This data-driven deep learning model learns the dependence of hospitalization and 
mortality rate on various detailed syndromic, demographic, mobility and clinical data." 30

https://covid19-projections.com/
https://github.com/dsheldon/covid
https://covid19.uclaml.org/
http://www.healthdata.org/covid/faqs
https://covid19.gleamproject.org/
https://covid-19.tacc.utexas.edu/media/filer_public/87/63/87635a46-b060-4b5b-a3a5-1b31ab8e0bc6/ut_covid-19_mortality_forecasting_model_latest.pdf
https://deepcovid.github.io/


Demo Visualization
https://viz.covid19forecasthub.org/
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https://viz.covid19forecasthub.org/


Baseline Model
• Different from flu forecasting baseline model! Not "seasonally" driven.

• Acknowledgment: idea adapted from a suggestion by Ryan Tibshirani (CMU).

• Goal: Median predicted incidence is most recent observed incidence.

• Predictions of cumulative deaths derived from predictions of incident deaths.

Incident Deaths Cumulative Deaths

32



Baseline Model
• Procedure:

• Compute first differences of historical incidence:


• Collect first differences and their negatives

• Sample first differences and add to last observed incidence; take quantiles of 

the resulting distribution

• Iterate for horizons > 1

• Adjustments for “niceness”:

• Force median = last observed incidence

• Truncate at 0

dt = yt − yt−1

33
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Building the Ensemble: View 1

• For each combination of spatial unit s, time point t, and forecast horizon h, 
teams are required to submit K=23 quantiles of a predictive distribution:


• The predictive quantiles for the ensemble are a combination of component 
predictions at each quantile level:

̂P (Y ≤ qm
s,t,h,1) = 0.01, ̂P (Y ≤ qm

s,t,h,2) = 0.025, …, ̂P (Y ≤ qm
s,t,h,12) = 0.5, …, ̂P (Y ≤ qm

s,t,h,23) = 0.99

The predictive median

Limits of a 98% prediction interval

qs,t,h,k = f(q1
s,t,h,k, …, qM

s,t,h,k) for each k = 1,…,23
34



0.00
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500 1000 1500 2000
Predicted Quantile Value

(Incident Deaths)

Q
ua

nt
ile

Forecaster
Component

QuantMean

QuantMedian

QuantTrained

Building an Ensemble: View 2
• The pairs                                     fall along the predictive CDF for model m


• Three options for the combination function f:


• QuantMean: 


• QuantMedian: 


• QuantTrained: 


qs,t,h,k =
1
M

M

∑
m=1

qm
s,t,h,k

qs,t,h,k = median(q1
s,t,h,k, …, qM

s,t,h,k)

(qm
s,t,h,k, ̂P (Ym

s,t,h ≤ qm
s,t,h,k))

qs,t,h,k = β0
t,h,k +

M

∑
m=1

βm
t,h,k ⋅ qm

s,t,h,k

Used through July 21, 2020

Used starting July 28, 2020

Evaluated, not released each week
35



Forecast Skill: Weighted Interval Score

ISα(F, y) = (u − l) +
2
α

⋅ (l − y) ⋅ 1(y < l) +
2
α

⋅ (y − u) ⋅ 1(y > u),

(1 − α) × 100 %

Width of

interval

Penalty if

interval is

too high

Penalty if

interval is

too low

ISα Pr
ed

ic
tiv

e 
Pr

ob
.

• Consider a single                       predictive interval [l, u] 
for the observed response y. The interval score is:


• Smaller      is better


Figure due to

Johannes Bracher
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ISα(F, y) = (u − l) +
2
α

⋅ (l − y) ⋅ 1(y < l) +
2
α

⋅ (y − u) ⋅ 1(y > u),

(1 − α) × 100 %

Width of

interval

Penalty if

interval is

too high

Penalty if

interval is

too low

ISα

WISα0:K(F, y) =
1

K + 1
× (w0 × 2 × |y − m | +

K

∑
k=1

(wk × ISαk
(F, y))) .

wi =
αi

2

ISα

≈

Pr
ed

ic
tiv

e 
Pr

ob
.

Pr
ed

ic
tiv

e 
Pr

ob
.

• Consider a single                       predictive interval [l, u] 
for the observed response y. The interval score is:


• Smaller      is better

• For multiple predictive intervals, we compute a 

weighted average of 


• We use weights           , in which case WIS     CRPS 
(continuous ranked probability score)


• The resulting score is proper: in expectation, it is 
minimized by the true predictive distribution.


• See Bracher et al. (2020) for more: 
https://arxiv.org/abs/2005.12881

Figure due to

Johannes Bracher


Forecast Skill: Weighted Interval Score
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Evaluation: Ensemble vs Components (WIS)
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Forecasts evaluated from teams submitting weekly between May and Sept.
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less accurate Each point is average error (WIS = weighted 
interval score) across all states for a given week. 

 
x is the overall average.  

Lower average errors indicate higher accuracy.
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Forecasts evaluated from teams submitting weekly between May and Sept.



Evaluation: Ensemble vs Components (WIS)
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Forecasts evaluated from teams submitting weekly between May and Sept.
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Forecasts evaluated from teams submitting weekly between May and Sept.



Evaluation: Ensemble vs Components (WIS)
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Forecasts evaluated from teams submitting weekly between May and Sept.



Ensemble coverage rates

interval level empirical 
coverage rate

50% PI 54%

80% PI 79%

95% PI 90%

Observed prediction interval (PI) coverage rates are close to nominal 
levels. Below numbers calculated across all 1-4 week ahead incident 

death ensemble forecasts from June through October where 
observed data is available.
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Summary: 
 
               Baseline  <  QuantMean  <  QuantTrained  <=  QuantMedian


Figure credit: Logan Brooks (CMU)


https://forecasters.org/blog/2020/10/28/comparing-ensemble-approaches-for-short-term-probabilistic-covid-19-forecasts-in-the-u-s/ 40

https://forecasters.org/blog/2020/10/28/comparing-ensemble-approaches-for-short-term-probabilistic-covid-19-forecasts-in-the-u-s/


Lessons from COVID-19 forecasts

• COVID-19 is "less predictable" than flu 
  - with flu, we have 10 years of training data 
  - harder to beat the baseline model 
  - model performance week-to-week varies 
  - not a big sample size to work with! 

• (Simple) ensemble forecasts add value  
  - more accurate than any single model 
  - add'l complexity doesn't improve ensembles

41



Infectious Disease Forecasting: 
ongoing challenges
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Challenge 1: Data sparsity 
 

(infectious disease dynamics cannot be observed like the weather)

43image credit: https://databasin.org/datasets/15a31dec689b4c958ee491ff30fcce75

Each dot represents 
a weather station whose  
data was used to create 
the WorldClim dataset.

image credit: https://goo.gl/images/CSSQRv

https://databasin.org/datasets/15a31dec689b4c958ee491ff30fcce75
https://goo.gl/images/CSSQRv


• Weather forecasts can't change the weather. 

• An outbreak forecast could change an outbreak.

44
Images of vector-control activities to control dengue in Thailand  
courtesy of Sopon Iamsirithaworn, Thailand Department of Disease Control

Challenge 2: Feedback loop

US military troops 
heading to Liberia to 
assist with Ebola 
outbreak. 
image: defense.gov

http://archive.defense.gov/home/features/2014/1014_ebola/


photo credit: Roni Rosenfeld

Dan Jernigan, Director of Influenza Division, CDC 
September 2018 
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Challenge 3: Translation into action



46

Challenge 3: Translation into action



Thank you!
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(we're hiring a post-doc, link on Hub website)



48https://xkcd.com/2278/ 

https://xkcd.com/2278/

