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The goal is to support the decision making process
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2. Have a record of

accuracy in past predictions
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Outline of This Talk

Predictive
Modeling

- Some common modeling tasks
e Some common models and methods for these tasks

e Evaluating predictions
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Common Modeling Tasks

* Nowcast: what is the state of the system now (or in the past)?

* Forecast: what will the state of the system be in the future?

e Scenario Projection: what would the state of the system be in the
future if certain specified conditions came about?

Nowcast Forecast

N 1 1 )
Surveillance data ; : ] Projections

1,750,000 -
1,500,000 +
1,250,000 -
1,000,000

750,000

Incident cases

500,000+

250,000

Preliminary data 5°oo

Odee®
N
7

2/29/20  4/25/20  6/20/20  8/15/20  10/10/20  12/5/20 1/30/21 3/27/21 5/22/21 7/17/21 o/1/21

Image credit: adapted from Nicole Samay, Alex Vespignani, current time
via the Scenario Modeling Hub, https://covid19scenariomodelinghub.org/



Examples of Nowcast & Forecast Targets

with Public Health Relevance

e Targets used in CDC annual influenza forecasting challenges

Disease incidence

* 4 short term weekly incidence targets (2 in recent past, 2 near future)
* TiIming of season onset
* Timing of season peak
* Peak incidence
t nowcasts forecasts peak intensity
4 wk ahead |
3 wk ahead
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current time weeks 13
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Disease incidence

[How] Could These Targets have
Greater Public Health Relevance?

* |s a categorical assessment of season severity (e.g. as low, moderate,

high, or very high) more relevant than numeric values of peak intensity?
* Maybe we care more about the largest incidence we'll observe over the
next 4 weeks than the incidence in each of those weeks”?
* Do we want to know whether there will be a change in growth rate or

direction of trend over the next 4 weeks?
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Examples of Scenario Projection Targets
with Public Health Relevance

e \WWhat would incident cases be over the next 6 months if there were
low/high vaccination rates and a low/high variant transmissibility
iINncrease”?

Projected Incident Cases by Epidemiological Week and by Scenario for Round 7
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[How] Could These Targets have
Greater Public Health Relevance?

* Do we care more about projected cases under each scenario, or the
expected difference or ratio of case levels between scenarios?
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e Some common modeling tasks

- Some common models and methods for these
tasks

e Evaluating predictions

17



General Classes of Models

Mechanistic: Model mechanisms of disease transmission

3 A
N I

* |Individuals move between compartments at rates that depend on:
* Current number of susceptible and infected individuals
* Potentially, other factors (e.g., weather)

Phenomenological: Model the association between
* Predictive variables (past disease incidence, weather, Google search

data, ...)
e Future disease Iincidence

2006 2008 2010 2012
Time
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When Should We Use Mechanistic
or Phenomenological Models”?

* For a generic forecasting task, neither is a priori better than the other
* Inthe COVID-19 Forecast Hub, for a long time the best model was:
e for cases, a phenomenological machine learning model
e for deaths, a mechanistic compartmental model
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* For a generic forecasting task, neither is a priori better than the other
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* For a scenario projection, mechanistic models have an advantage:
* Can encode expert knowledge about the disease system that a
phenomenological model may not be able to learn due to lack of
relevant data. 20



Models May Combine Mechanistic
and Phenomenological ldeas

There are a tew ways this has been done:

1. By temporal scale: Nowcasts or short term forecasts use
phenomenological model, long term forecasts use mechanistic model
* Examples:
e Columbia University (Shaman Group) model for influenza
forecasting
* IHME for COVID-19

2. Mechanistic core, phenomenological model to capture biases of the
core
* Examples:
* Los Alamos National Laboratory (Dave Osthus) model for influenza
* DeepGLEAM model for COVID-19
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Fnsembles Combine Models
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Example:
* Ensemble prediction is average of predictions from component models

Theory (simplitied):

* Ensembles are at least as good as the component models

Practice:
* Performance depends on implementation details

* Ensembles are consistently at or near the top of the rankings i



Results from Influenza
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Results from COVID-19

lower scores are better

Average WIS

Average WIS

B: Average 1-week ahead weighted interval scores by model
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Using Bad Predictions Can
Have Bad Conseqguences

Public health actions inf

ater prove to be inaccL

or

ra

med by forecasts that
e can have negative

conseqguences, including the loss of credibility,
wasted and misdirected resources, and, In the

worst case, increases in morbidity or mortality.

— Biggerstatft et al. BMC Infectious Diseases 2016.

"A bad prediction can be worse than no prediction at all’

— Dr. Carrie Reed, CDC Influenza Division
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A First Step Toward Avoiding
Use of Bad Predictions

Only use predictions from models with a track
record of reliable performance.




A First Step Toward Avoiding
Use of Bad Predictions

Only use predictions from models with a track

record of reliable performance.

(at minimum, use caution it limited track record)
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cvaluating Nowcasts and Forecasts

Communicate Take
Predictive With Decision Public Health
Modeling Makers Actions

BitcNe

The goal is to support the

* |deally, we would evaluate the quality of forecasts in the specific
context of the decision making process we have in mind.
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Evaluating Nowcasts and Forecasts
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The goal is to support the

* |deally, we would evaluate the quality of forecasts in the specific
context of the decision making process we have in mind.
 Example: we are planning distribute a limited supply of oxygen
across hospitals to minimize the number of patients with unmet need
* Can we quantify the loss incurred if we use an incorrect forecast?
* e.g., count of patients with unmet need
* |t sO, prefer forecasts that minimize this loss
* This is difficult: hard to characterize loss, different for every problem.
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The goal is to support the

* |deally, we would evaluate the quality of forecasts in the specific
context of the decision making process we have in mind.
 Example: we are planning distribute a limited supply of oxygen
across hospitals to minimize the number of patients with unmet need
* Can we quantify the loss incurred if we use an incorrect forecast?
* e.g., count of patients with unmet need
* |t sO, prefer forecasts that minimize this loss
* This is difficult: hard to characterize loss, different for every problem.

* Backup plan: More generic comparisons of forecasts to observed data
31



Overall Scores Can Obscure Detalls

Incident Cases

* Forecasts of weekly COVID cases from COVIDhub-ensemble and

Karlen-pypm in Missouri during t

ne Delta wave:

COVIDhub—-ensemble

Karlen—pypm
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e Karlen is better at identitying the
badly near the peak.

| May |Jun |Ju| |Aug | Sep |Oct

rise of the Delta wave, misses

* Karlen’s overall WIS is worse, but there is a more nuanced story:

* |t you want to identity the start

of a new wave, ook to Karlen

 The rest of the time, look at the ensemble
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Evaluating Nowcasts and Forecasts

US COVID-19 Cases and Hub Ensemble Forecasts
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Evaluating Nowcasts and Forecasts

* ook at lots of plots!
* Use proper scores (log score, CRPS, WIS, ...) to compare models
* Theory says you can't “cheat” proper scores
e Often not that interpretable
* Helpful to use a simple baseline model as a reference

lower scores are better

Relative WIS (log scale)
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Evaluating Nowcasts and Forecasts

* Look at lots of plots!
* Use proper scores (log score, CRPS, WIS, ...) to compare models
* Theory says you can't “cheat” proper scores
e Often not that interpretable
* Helpful to use a simple baseline model as a reference
* Examine calibration
* Across many forecasts, a 95% prediction interval should contain
the eventually observed outcome about 95% of the time
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Evaluating Scenario Projections

* Evaluating scenario projections is difficult:

* Care must be taken to specity the objective of the projections:

* |s the goal conditional or counterfactual statements about what
would happen in each scenario?

* |s the goal to estimate causal effects of policy differences?
* How should we handle potential confounding variables?

* Care must be taken to specify how to evaluate the projections:
* We can't directly compare to observed data
e Causal parameters may not be identifiable from observed data

e But careful evaluations are still critical!

* A more rigorous conversation about evaluating projections should
involve experts from the causal inference community
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Conclusions/Summary

Predictive model outputs (nowcasts, forecasts, and scenario
projections) may be helpful for a wide variety of public health
decisions, if:

* The predictions are relevant to the decision at hand

* The predictions have a track record of good performance

What methods to use?
e (Good forecasts can come from either mechanistic or

phenomenological approaches
* Across many applications, ensembles have shown good results
* Preferences should be based on data about performance

More work needs to be done to put evaluation of scenario projections
on a solid footing.

See similar discussion of forecasting in “Applying infectious disease
forecasting to public health: a path forward using influenza forecasting
examples” by Lutz et al. (2019) BMC Public Health -



Thanks!

I'd like to acknowledge helptful conversations and insights from
Nick Reich, Ryan Tibshirani, Roni Rosenfeld, Aaron Gerding,
Meagan Burns, Rosa Ergas, Matthew Biggerstatt,
and Mike Johansson

38



